
 Programmer’s Guide to the DCM Facility

A Facility for Manipulating DICOM Information Objects

Stephen M. Moore

Mallinckrodt Institute of Radiology
Electronic Radiology Laboratory

510 South Kingshighway Boulevard
St. Louis, Missouri 63110

314/362-6965 (Voice)
314/362-6971 (FAX)

Version 2.10.0

August 3, 1998

This document describes a general software facility for
manipulating DICOM V3 Information Objects.

 Copyright (c) 1995 RSNA, Washington University
/wuerlb/documentation/dicom/facilities/objects.frm

d by
ard.
e rou-

tion of
-tuple
d inte-
ata rep-
ssible

ata.
ts
pplica-
esenta-
t

 This is
data
t

 by tag
1 Introduction

The DCM facility is a set of routines used to manipulate DICOM Information Objects define
the DICOM V3.0 (Draft) Standard. These routines are based on Parts 5 and 6 of the Stand
They allow the user to create, parse, update, import and export Information Objects. Thes
tines do not enforce any rules which are defined in Part 3 of the Standard.

1.1 Data Elements

The V3 standard defines a number of data elements which are identified by tag (concatena
group and element number), length and data value. Each data element is defined by the 3
(tag, length, value). Tag is defined as a 32 bit unsigned integer. length is a 32 bit unsigne
ger and is the length in bytes of the value to follow. Each data element has an associated d
resentation which is defined in the dictionary in the V3 standard. Part 5 defines the list of po
representations.

Several representation are included below as an example.

 AS Age String

 DA Data

 PN Person Name

 SS Signed Short

The DCM facility provides means for informing the application of the representation of the d
The DCM facility will also make certain that an application does not attempt to create objec
with illegal data elements. That is, if the data element appears in the DCM dictionary, the a
tion must use the proper value representation when creating objects or ask to use the repr
tion found in the dictionary. The facility does not examine ASCII data elements to verify tha
numeric and text fields are formatted properly.

The V3 standard defines whether data elements contain a single value or multiple values.
referred to as value multiplicity. This facility provides no direct mechanisms for supporting
elements with multiple values and leaves it to the application to interpret data elements tha
assume multiple values.

1.2 Data Objects

Data elements are combined to form objects. Data elements are stored in sequential order
value. This facility defines three types of objects:
1/39

n.
 which

ica-

y cre-

V3

ns:

t-

ble

quired
e V3
ine

ata
COMMAND An object consisting only of data elements in the
Command group (0000). Part 7 of the V3 standard lists
the commands that are defined.

DATA SET An object consisting of groups excluding the
Command group. An example would be an
image or an identifier for a query.

UNKNOWN An object which is empty or contains both command and
 non-command elements.

Objects are maintained by the facility in an internal format that is hidden from the applicatio
For the rest of the Introduction, a reference to object will mean the internal representation
is maintained by the DCM facility during the execution of an application. We will not use
object to refer to a DICOM V3 stream that might be stored in a file or in a buffer in the appl
tion’s data space.

This facility provides several mechanisms for creating and modifying objects. The user ma
ate an object by:

• Opening a file that contains an DICOM V3 data stream.

• Importing a data stream from the application’s virtual memory that contains DICOM
data.

• Creating an object explicitly and adding a number of data elements to the object.

Once an object has been created, it may be manipulated with the following types of functio

• Add a new data element to the object.

• Remove a data element from the object.

• Modify the value of existing elements in the object.

• Extract the size of the object when represented in stream format.

• Extract the size of a single data element.

• Extract the data from a single data element.

• Export the object into the V3 stream format (suitable for writing to disk or over a ne
work).

• Print a human-readable version of the object to the standard output.

Please refer to the individual function pages for a complete list and description of the availa
functions.

Part 3 of the V3 Standard describes Information Objects and defines which elements are re
(mandatory) or optional. This facility provides no means for verifying that an object meets th
standard by containing the required data elements. That is, the DCM facility does not exam
objects to make certain they contain mandatory data elements. This facility will maintain d
2/39

the

 optial.
 main-
e in the

d in the
e
o
 in lit-
it
t is
r

ented.
ment

 from a
e facil-

cility
ents

th
 such
specify
is only
 to a
en-

to tell
en
when

 the
fica-
elements in proper numerical order, but the application must determine that an object has
required data elements.

The group length data element (element 0000 in any group) has been either retired or made
This implementation accepts Information Objects with group length elements, but does not
tain these elements. The export routines do not write group length elements even if they ar
original object.

1.3 Miscellaneous Issues

The V3 standard defines a number of transfer syntaxes which are used when data is place
stream format. This applies to files that store DICOM V3 data and to stream buffers that ar
imported and exported by this facility. The DCM facility provides options to allow the user t
specify the byte order of the data. That is, an application can work with stream data that is
tle-endian or big-endian format. The little-endian format corresponds to the “DICOM Implic
VR Little Endian Transfer Syntax” defined by Part 5 of the Standard. The big-endian forma
used for old V2 data files for manufacturers that stored data in big-endian format. The othe
transfer syntaxes defined in Part 5 and the file format defined in Part 10 are not yet implem
Whether the data is represented in little-endian or big-endian format, the items in a data ele
are always transmitted in the following order:

• Group

• Element

• Length

• Value

When an application wishes to add a single data element to an object or to retrieve the data
single element, this facility uses the byte order that is native to the machine. In this way, th
ity tries to minimize the work an application has to do to interpret the data values.

Data elements that are not present in the data dictionary present special problems. This fa
provides no means for extending the data dictionary. If a file with DICOM data contains elem
that are not in the data dictionary, the DCM facility will not be able to assist applications wi
value representation and byte order. It will be up to the application to know how to interpret
data. When individual data elements are added to an existing object, the application may
the data representation for data elements not in the dictionary. However, this specification
maintained as long as the object is maintained by the package. Once the data is exported
stream or to a file, the DCM facility will not know how to interpret the data. With this implem
tation of the DCM facility, the safest practice for data elements not in the data dictionary is
the package they are of unknown representation (DCM_UNKNOWN). The package will th
pass the data without trying to interpret or modify the order of the bytes. (This will change
Part 10 is implemented).

When the facility opens a file containing DICOM data for the purpose of creating an object,
file is opened for read-only access. If the application modifies the object, those modi
3/39

ened,
e data
 This
e and
r-

ICOM

crip-

 does

f this
rivate
les as

obj).
cha-
tions are local to the current process and are not written back to the file. When a file is op
most of the data elements are read into virtual memory for fast recall by applications. Som
elements remain on disk. Specifically, this facility does not read the pixel data immediately.
is done for performance reasons. The facility maintains a pointer to the pixel data in the fil
will retrieve the pixels when asked. In this way, an application does not have to pay a perfo
mance penalty when opening a file containing a large image. The result of this is that the D
file may remain open after the call to DCM_OpenFile until you explicitly close that object
(DCM_CloseObject). This means that applications will not want to have a large number of
objects which were created from files because the processes are likely to run out of file des
tors. System administrators have more information on available file descriptors.

DICOM V3 defines a number of value representations. The current version of the software
not implement the SQ representation. This will be corrected shortly.

2 Data Structures

The include file with the DCM facility defines two data structures of importance to the user o
package. A DCM_OBJECT is a handle used by the caller to hold an object. This handle is p
to the DCM facility and cannot be examined by the caller. Users should declare their variab
a pointer to a DCM_OBJECT (DCM_OBJECT *obj) and pass the variables by reference (&
All functions in this facility expect the user to pass the reference to an object with this me
nism.

2.1 DCM_ELEMENT

The include file also defines a DCM_ELEMENT as a structure:

 typedef struct {
 DCM_TAG tag;
 DCM_VALUEREPRESENTATION representation;
 char description[48];
 unsigned long multiplicity;
 unsigned long length;
 union {
 char *string;
 char **stringArray;
 short *ss;
 long *sl;
 unsigned short *us;
 unsigned long *ul;
 unsigned char *ob;
 unsigned short *ow;
 LST_HEAD *sq;
 DCM_TAG *at;
 } d;
 } DCM_ELEMENT;
4/39

t of the
efines
se the
ent.

pro-
the

cility.

OWN

y be
e of

 of the
d to

ller
r stor-
e caller
the

ory
e a
 been

ence
ing
 for
le, if a
This is the structure used to describe individual data elements and to pass them into and ou
package. The caller specifies a data element by filling in the tag field. The include file d
macros for data elements found in the data dictionary. It is suggested that programmers u
macros instead of hard-coding hexadecimal values. length gives the length of the data elem
length may be provided by the caller when adding a data element to an object or may be
vided by the facility when the caller requests the length of a data element. Please refer to
function descriptions for the use of this field.

The representation is an enumerated type which is defined in the include file for the DCM fa
Valid representations are:

Most of the representations listed above are found in Part 5 of the Standard. DCM_UNKN
is used as a tag for unknown representations. DCM_RET is used for retired attributes.
DCM_CTX is used for context sensitive attributes. Depending on the function, this field ma
filled in by the facility or by the application. Please refer to the individual functions for the us
this field.

The englishDescription field is a short text field that contains a human-readable description
data element. This is most helpful for developers and is also used when the facility is aske
print the contents of an object. This field is normally filled in by the DCM facility. There are
some functions that allow the caller to fill in this field.

The d field provides a pointer to the actual data value. This field is always written by the ca
and is never written by the DCM facility. This means that the caller is always responsible fo
age when adding data elements or when extracting data elements from an object. When th
asks the facility to retrieve the data value for a data element, the DCM facility requires that
user set aside storage for that data value. This minimizes confusion over the owner of mem
that might be allocated. When the caller adds an element to an object, the facility will mak
copy of the data value, so the caller need not maintain the data once the data element has
added.

The d field is a union of pointers of different types. The DCM facility allows the user to refer
data using the appropriate pointer for the data type. Since a number of data types are “str
types”, we collapse that definition into a single pointer, string. When a caller allocates data
data, they should take care to maintain the data on proper address boundaries. For examp

DCM_AE DCM_AS DCM_AT DCM_CS DCM_DA

DCM_DD DCM_DS DCM_DT DCM_FD DCM_FL

DCM_IS DCM_LO DCM_LT DCM_OB DCM_OW

DCM_PN DCM_SS DCM_SH DCM_SL DCM_SQ

DCM_ST DCM_TM DCM_UI DCM_UL DCM_US

DCM_CTX DCM_RET DCM_UNKNOWN
5/39

 aligned

de the
function passes the address of data which is an unsigned long (4 bytes), the data should be
on a word boundary and not on an odd boundary.

3 Include Files

Any source code that uses the DCM routines, structure definitions or constants should inclu
following files in the order given:

#include “dicom.h”
#include “lst.h”
#include “dicom_objects.h”

4 Return Values

DCM_BADELEMENTINGROUP DCM software detected an internal error
where an element was placed in the wrong group.

DCM_CALLBACKABORTED Callback aborted by user.
DCM_CANNOTGETSEQUENCEVALUE Function failed to retrieve a value that

had a representation of SQ.
DCM_ELEMENTCREATEFAILED Fuction failed to create memory for a data

element.
DCM_ELEMENTLENGTHERROR Element length specified is longer than remaini

data in stream or file input.
DCM_ELEMENTNOTFOUND Function failed to find a data element requested

by the caller.
DCM_ELEMENTOUTOFORDER Data element not in numerically ascending order

when reading data from a file or from a
buffer in memory.

DCM_EXPORTINCOMPLETE Export function is incomplete. More data in
the object than will fit in the caller’s buffer.

DCM_NORMAL Normal return from DCM function.
DCM_FILEACCESSERROR Function failed to read a file after it was

opened. Indicates the file does not contain
syntactically correct data or that a file error
occurred.

DCM_FILECREATEFAILED Failed to create a file.
DCM_FILEDELETEFAILED Failed delete a file.
DCM_FILEIOERROR IO file when accessing (r/w) a file.
DCM_FILEOPENFAILED Function failed to open requested file.
DCM_GETINCOMPLETE DCM_GetElement value returned incomplete data

because caller’s buffer was smaller than the length
of the data element.

DCM_GROUPNOTFOUND Could not find the group requested by caller.
DCM_ILLEGALADD Caller attempted to add an illegal element to an

existing object (such as a group length).
DCM_ILLEGALCONTEXT Caller passed illegal context variable to

DCM function.
DCM_ILLEGALOBJECT Caller attempted function on an object that is

not a legal DCM_OBJECT.
DCM_ILLEGALOPTION Caller passed illegal option to DCM function.
6/39

DCM_ILLEGALREPRESENTATION Illegal representation specified for data element.
DCM_ILLEGALSTREAMLENGTH Function encountered an illegal stream length

(negative or odd number).
DCM_INSERTFAILED DCM function failed to insert new element as

requested.
DCM_LISTFAILURE Failure in a list function caused DCM function

to fail.
DCM_MALLOCFAILURE Failed allocate heap memory.
DCM_NORMAL Normal return from DCM function (success)
DCM_NULLADDRESS Caller passed a NULL address to DCM function which

was expecting to write something back to caller.
DCM_NULLOBJECT Caller passed NULL DCM_OBJECT to DCM function.
DCM_OBJECTCREATEFAILED Function failed to create DCM_OBJECT.
DCM_UNEXPECTEDREPRESENTATION Caller passed an element with an unexpected

value representation. (It did not match the
VR in the internal dictionary.)

DCM_UNEVENELEMENTLENGTH Uneven element length found in data element.
DCM_UNRECOGNIZEDELEMENT Element not found in DCM dictionary
DCM_UNRECOGNIZEDGROUP Group not found in DCM dictionary.

5 DCM Functions

This section contains detailed descriptions of the DCM functions.
7/39

 data
or
(for a

he

erated

y
ngth
 a data
ally

e

 the
cil-
ion
DCM_AddElement

Name

DCM_AddElement - add a single data element to an existing information object.

Synopsis

CONDITION DCM_AddElement(DICOM_OBJECT **object,
DCM_ELEMENT *element)

object The existing DICOM information object.

element A description of a data element to be added to object.

Description

DCM_AddElement makes a copy of a data element passed by the caller and adds the
element to an existing information object. The caller is required to fill in the values f
tag, length and data. The caller may optionally fill in representation and description
data element in a shadow group).

If the caller specifies representation as DCM_UNKNOWN, the function will look up t
element in the DICOM dictionary before adding in to the object.

Adding a data element to an existing object involves several rules. These are enum
below:

• Applications are not allowed to add Group Length elements (element 0000 in an
group). The DCM facility maintains those elements and recalculates the group le
when a data element is added to a group. In the event that a caller wishes to add
element from a group that does not exist in the object, this function will automatic
create the group and the corresponding Group Length element.

• Data elements can be added in any order. This function inserts the element in th
proper location in the object.

• The caller can add an element which is not in the DICOM dictionary by specifiying
the representation DCM_UNKNOWN or DCM_OB. If the data is exported, the fa
ity will not try to manage the data for the proper byte ordering. Thus, the applicat
will have to maintain this data as private. This will be an issue if an application
exports data to be read on a machine with a different architecture (byte order).

Return Values

DCM_NORMAL DCM_NULLOBJECT
DCM_ILLEGALOBJECT DCM_ILLEGALADD
DCM_LISTFAILURE DCM_ELEMENTCREATEFAILED
8/39

tion
 refer-
DCM_CloseObject

Name

DCM_CloseObject - destroy the internal representation of an object and remove the
caller’s reference to the object.

Synopsis

CONDITION DCM_CloseObject(DCM_OBJECT **object)

object The caller’s reference to the object to be closed.

Description

DCM_CloseObject closes an information object by destroying the internal representa
of the object. After the object has been destroyed, the function removes the caller’s
ence to the object by writing NULL into the caller’s handle. This function is called to
close objects that have been created withDCM_CreateObject, DCM_ImportStream and
DCM_OpenFile.

Return Values

DCM_NORMAL
DCM_NULLOBJECT
DCM_ILLEGALOBJECT
DCM_LISTFAILURE
9/39

 to the

r.
dden
 call-

 that
 each
th

er
DCM_CreateObject

Name

DCM_CreateObject - creates a new (empty) information object and returns a handle
caller.

Synopsis

CONDITION DCM_CreateObject(DCM_OBJECT **object,
unsigned long opt)

object The handle for the object returned by this function.

opt Options argument which is used to determine features of the newly
created object.

Description

DCM_CreateObject creates a new information object and returns a handle to the calle
The function allocates memory for the object and fills in the several fields that are hi
from the caller. After the object is created, the application can add data elements by
ing DCM_AddElement.

Theopt argument controls features of the newly created object. There is one feature
is implemented. The default mode is that objects will have group length elements for
group that is created. If the caller specifices DCM_NOGROUPLENGTH, group leng
elements will not be maintained and will note be exported if the caller invokes
DCM_ExportStream or DCM_WriteFile.

Notes

DCM_OpenFile andDCM_ImportStream create information objects. Therefore, the call
should not callDCM_CreateObject and use the handle in a call toDCM_OpenFile or
DCM_ImportStream.

Return Values

DCM_NORMAL
DCM_OBJECTCREATEFAILED
DCM_LISTFAILURE
10/39

ss
DCM_Debug

Name

DCM_Debug - turn debugging messages on or off

Synopsis

void DCM_Debug(CTN BOOLEAN flag)

flag Indicates if debugging should be enabled.

Description

DCM_Debug is used to enable or disable debugging messages. The caller should pa
TRUE or FALSE.

Return Values

None
11/39

le-

tation
 lim-

d

e
are
DCM_DumpElements

Name

DCM_DumpElements - a developer’s tool which dumps a description of each data e
ment to the standard output.

Synopsis

CONDITION DCM_DumpElements(**object, long vm)

object Caller’s handle to the information object to be dumped

vm Value multiplicity flag. Dump extra values for non zero vm

Description

DCM_DumpElements prints a short description of each data element in a object to the
standard output. This description includes:

• tag value

• length

• english description

The function also prints a representation of data elements according to their represen
(integer or ASCII string). The data printed may be incomplete because the output is
ited to one line per data element.

The normal output for binary values is to print the first value of the attribute in hex an
decimal. If the caller passes a non-zerovm, this function will print up tovm values of the
attribute in decimal. This has been useful for dumping binary values in attributes lik
lookup tables.This will normally not work for pixel data because of the way that files
parsed.

Return Values

DCM_NORMAL
DCM_NULLOBJECT
DCM_ILLEGALOBJECT
12/39

ary

rnal
tag;
e

nt to

)

DCM_ElementDictionary

Name

DCM_ElementDictionary - lookup one or more elements in the internal DCM diction

Synopsis

CONDITION DCM_ElementDictionary(DCM_TAG tag, void *ctx,
void (*callback)(DCM_TAG t, char *description,
DCM_VALUEREPRESENTATION r, void *ctx))

 tag The DICOM tag that defines the attribute to be found in the dictionary.

ctx Caller context information to be supplied to caller’s callback function.

callback Callback function invoked for each element found in the dictionary.

Description

DCM_ElementDictionary is used by callers to lookup one or more elements in the inte
DCM element dictionary. The caller requests one element by passing a valid tag in
the caller can wildcard the group or element in the tag by using the value 0xffff as th
number for the group or element.

 For each element that matches the tag specificied,DCM_ElementDictionary invokes the
callback function with the arguments shown in the prototype above. description is a
description of the element with tag t. ctx is user context data that the caller may wa
use during the callback function.

Notes

To get all of the elements in group 0x0028, use tag: DCM_MAKETAG(0x0028, 0xffff

To get all elements, use tag: DCM_MAKETAG(0xffff, 0xffff)

To get all elements with element number 0x0004 regardless of group, use tag:
DCM_MAKETAG(0xffff, 0x0004)

Return Values

DCM_NORMAL
13/39

cre-

o a
d the
f the

n to
 may

d

DCM_ExportStream

Name

DCM_ExportStream - takes the internal representation of an information object and
ates the stream representation suitable for output to a network or a file.

Synopsis

CONDITION DCM_ExportStream(DCM_OBJECT **object,
unsigned long options, void *buffer,
unsigned long length, CONDITION (*callback)(),
void *ctx)

object Caller’s handle to the object to be exported.

options Bitmask specifying options during export process (byte order).

buffer Pointer to the caller’s buffer to hold the exported data.

length Length of the caller’s buffer. Not necessarily large enough to
hold the entire stream.

callback User function which is called whenever DCM_ExportStream
wants to dump output data.

ctx Context variable provided by the caller and written by the function
for successive calls to the function.

Description

DCM_ExportStream takes a DICOM object and creates a byte stream that conforms t
transfer syntax defined in Part 5 of the Standard. The caller specifies a buffer to hol
data and the length of the data. This function traverses the internal representation o
object and exports data into the caller’s buffer. As the caller’s buffer is filled,
DCM_ExportStream calls the user callback function and expects that callback functio
dispose of the byte stream that is created. Multiple calls to the user callback function
be necessary to complete the export operation.

The options argument is a bit mask defining options used during the export. Define
options are:

DCM_ORDERLITTLEENDIAN Export the data in the little-endian format.

DCM_ORDERBIGENDIAN Export the data in big-endian format.
14/39

e
n.
When the user callback function is called, the arguments are:

buffer Address of data exported by this function. This may or may not be the
same as the buffer argument the user passed to this function.

bytes An unsigned long which gives the number of bytes which are
exported during this call.

last An int flag which is TRUE (1) if this is the last buffer in the object
and FALSE otherwise.

ctx The caller’s ctx argument. This provides the caller with a mechanism
for maintaining context information in the callback.

The user callback function should return DCM_NORMAL if it successfully exports th
data and DCM_EXPORTABORT if it wishes to halt the export process for any reaso

 Return Values

DCM_NORMAL
DCM_NULLOBJECT
DCM_ILLEGALOBJECT
DCM_ILLEGALOPTION
DCM_EXPORTABORT

Code Example

static CONDITION callback(void *b, unsigned long l, int flag, in fd)
{

 if (flag)
 printf(“Last buffer!\n”);

 if (write(fd, b, l) == (int)l)
 return DCM_NORMAL;
 else {
 (void)close(fd);
 return DCM_EXPORTABORT;
 }

}

CONDITION writeObject(DCM_OBJECT *obj, char * name)
{
 CONDITION cond;
15/39

 unsigned char buf[2048];
 int fd;

 fd = open(name, O_CREAT | O_WRONLY, 0666);

 if (fd < 0)
 punt();

 cond = DCM_ExportStream(&obj, DCM_ORDERLITTLEENDIAN,buf,
 sizeof(buf), callback, fd);

 if (cond != DCM_NORMAL)
 punt();

 return 1;

}

16/39

.

re
L to
DCM_GetElement

Name

DCM_GetElement - retrieve an element from an object minus the pointer to the data

Synopsis

CONDITION DCM_GetElement(DCM_OBJECT **obj, DCM_TAG tag,
DCM_ELEMENT *attribute)

object The handle for the user’s information object.

tag A tag (group, element) which identifies the element to be retrieved.

attribute Address of memory allocated by user to hold returned element.

Description

DCM_GetElement searches the caller’s DICOM object for one attribute and returns a
description of the attribute if it exists in the object. All fields in the attribute variable a
filled in with the exception of the pointer to the actual data. The pointer is set to NUL
prevent the caller from modifying data that is maintained by the DCM facility.

Return Values

DCM_NORMAL
DCM_NULLOBJECT
DCM_ILLEGALOBJECT
DCM_ELEMENTNOTFOUND
17/39

ject..

nt.
 The
 mem-
uch

he

ari-

s not
CII
ASCII

repre-
 and
DCM_GetElementValue

Name

DCM_GetElementValue - retrieves the data for a single data element in a DICOM ob

Synopsis

CONDITION DCM_GetElementValue(DCM_OBJECT **object,
DCM_ELEMENT *element,
unsigned long *rtnLength, void **ctx)

object The handle for the user’s information object.

element The description (tag) of the data element to be retrieved and a
description of the location and size of the area to hold the data.

rtnLength The length of the data (in bytes) returned to the caller.

ctx Context variable used by this function for successive calls to retrieve
data which does not fit entirely in the caller’s buffer.

Description

DCM_GetElementValue is used to retrieve all or part of the data for a single data eleme
The caller identifies a data element by filling in the tag field in the element argument.
caller allocates memory to hold the data and specifies the address and length of the
ory in the data and length fields of the element argument. The function copies as m
data as will fit into the caller’s area and writes the length of the returned data into thertn-
Length argument. Subsequent calls to the function will continue copying data from t
point where the previous call stopped. The caller should place NULL in thectx argument
before the first call to get data for a particular data element. The function uses this v
able to maintain its position in the data stream.

As implied above, this function copies data to an area defined by the caller and doe
allocate memory. This function does not terminate data elements which contain AS
data. The function returns the length of the data and requires the user to terminate
strings for use with standard run time libraries.

Notes

This function does not allow the caller to retrieve the value of an element that has a
sentation of DCM_SQ. Such elements contain a number of different types of values
do not fit the model of this function. User’s should refer to the function
18/39

DCM_GetSequenceList for information on extracting data from elements that are
sequences.

Return Values

DCM_NORMAL
DCM_ILLEGALOBJECT
DCM_GETINCOMPLETE
DCM_ELEMENTNOTFOUND
DCM_ILLEGALCONTEXT
DCM_CANNOTGETSEQUENCE
19/39

t that

may
ng
string

ture

o the
s data.
DCM_GetElementValueList

Name

DCM_GetElementValueList - create and return a list of string values from an elemen
may have a value multiplicity of greater than one.

 Synopsis

CONDITION DCM_GetElementValueList(DCM_OBJECT **object,
DCM_TAG tag, size_t structureSize,
long stringOffset, LST_HEAD **list)

object Address of a pointer to a DCM_OBJECT. This is the handle for the
object to be examined for the data element.

tag The 32-bit tag which identifies the data element of interest.

structureSize Size of the structure the caller wants to have placed in the list.

stringOffset Offset of the string value in the caller’s structure.

list Address of a pointer to a LST_HEAD structure. This function will
create a new list and write the pointer to the list in the caller’s area.

Description

DCM_GetElementValueList is used to retrieve data from elements that are strings and
have a value multiplicity greater than one. Such values are encoded by concatenati
them in a string with an explicit separator (\). This function parses the concatenated
and creates a structure for each string found. This structure is defined by the caller
through thestructureSize andstringOffset arguments.stringOffset tells this function
where to place the ASCII string in the structure created by this function. Each struc
that is created by this facility is placed in the caller’s list by callingLST_Enqueue. The
caller is responsible for creating the list before callingDCM_GetElementListValue.

Notes

This function does not attempt to clear the caller’s list before adding new elements t
list. The caller may wish to use this feature to add items to a list that already contain

Return Values

DCM_NORMAL DCM_NULLOBJECT
DCM_ILLEGALOBJECT DCM_ELEMENTNOTFOUND
DCM_MALLOCFAILURE DCM_LISTFAILURE
20/39

ts

the
DCM_GetElementSize

Name

DCM_GetElementSize - returns the length of the data for a single data element.

Synopsis

CONDITION DCM_GetElementSize(DCM_OBJECT **object,
DCM_TAG tag, unsigned long *rtnLength)

object The caller’s handle for the information object.

tag The tag value (group, element) which uniquely defines the attribute
(as defined in the data dictionary in Part 6 or in the Annex of other par
of the Standard).

rtnLength Pointer to caller’s variable to hold returned length.

Description

DCM_GetElementSize searches the information object identified by object for the data
element defined by tag. The function returns the length of the data by writing it into
caller’s rtnLength variable.

If the requested element is not found in the caller’s object,DCM_GetElementSize does not
update the caller’s rtnLength variable and returns DCM_ELEMENTNOTFOUND.

Return Values

DCM_NORMAL
DCM_NULLOBJECT
DCM_NULLOBJECT
DCM_ILLEGALOBJECT
DCM_ELEMENTNOTFOUND
21/39

ted in

or-
DCM_GetObjectSize

Name

DCM_GetObjectSize - detemines the length of an information object when represen
stream format and returns the length to the caller.

Synopsis

CONDITION DCM_GetObjectSize(DCM_OBJECT **object,
unsigned long *rtnLength)

object The caller’s handle to the information object.

rtnLength Pointer to the caller’s variable to hold length of the object.

Description

The DCM facility is designed to support information objects in stream format.
DCM_GetObjectSizedetermines the length of an object when represented in stream f
mat and returns that length to the caller.

Return Values

DCM_NORMAL
DCM_NULLOBJECT
DCM_NULLOBJECT
DCM_ILLEGALOBJECT
22/39

ject

ess.

Q. If

ent.

ce.

od-
DCM_GetSequenceList

Name

DCM_GetSequenceList - return the head of the list of a set of items in a sequence.

Synopsis

CONDITION DCM_GetSequenceList(DCM_OBJECT **object,
DCM_TAG tag, LST_HEAD **list)

object Address of a pointer to a DCM_OBJECT. This is the handle for the ob
to be examined for the data element.

tag The 32-bit tag which identifies the data element of interest.

list Address of a pointer to a LST_HEAD object. This function will store
the LST_HEAD object which contains the sequence items at this addr

Description

DCM_GetSequenceList searches an information object for an element specified by the
caller’s tag argument. This element is assumed to have a representation of DCM_S
the element is found and has the proper representation, this function stores the
LST_HEAD object of the sequence at the address specified by the caller’s list argum

This function allows the caller to get the list of DCM_OBJECTS that are in a sequen
The caller may then examine the individual items in the list.

Notes

Because this function returns a copy of the LST_HEAD pointer, the caller must not m
ify any of the objects in the list. The items are still maintained by the original object.

Return Values

DCM_NORMAL
DCM_NULLOBJECT
DCM_ILLEGALOBJECT
DCM_ELEMENTNOTFOUND
23/39

l
er in

g

DCM_GroupDictionary

Name

DCM_GroupDictionary - lookup one or more groups in the internal group dictionary.

Synopsis

CONDITION DCM_GroupDictionary(unsigned short group,
void *ctx,
void (*callback)(unsigned short g,
 char *description, void *ctx))

group The group the caller would like to lookup in the DCM dictionary.

ctx Caller context information to be supplied to caller’s callback function.

callback Callback function invoked for each group found in the dictionary.

Description

DCM_GroupDictionary is used by callers to lookup one or more groups in the interna
DCM group dictionary. The caller requests one group by passing a valid group numb
group; the caller specifies all groups by passing the value 0xffff in group.

For each group that matches (one or all),DCM_GroupDictionary invokes the callback
function with the arguments shown in the prototype above.description is a description of
the group with numberg. ctx is user context data that the caller may want to use durin
the callback function.

Return Values

DCM_NORMAL
24/39

nfor-

buf,
OM
ta in
dors
d in
lies

eam
DCM_ImportStream

Name

DCM_ImportStream - imports a stream of data in DICOM V3 format and creates an i
mation object to represent the data.

Synopsis

CONDITION DCM_ImportStream(void *buf, unsigned long length,
unsigned long options, DCM_OBJECT **object)

buf Pointer to caller’s buffer holding stream data to be imported.

length Length of the data stream in bytes.

options Bitmask giving options to function during import process.

object Handle to information object to be created and returned to caller.

Description

DCM_ImportStream creates a new information object and fills it by passing the data (
length) supplied by the caller. The data is assumed to comply with Part 5 of the DIC
V3 Standard. The Implicit Little-Endian transfer syntax is implemented as well as da
big-endian format. The big-endian data format supports image data supplied by ven
with V2 data and does not comply with the Explicit Big-Endian transfer syntax define
Part 5. The function performs minor rules checking to determine if the stream comp
with the standard.

Theoptions argument is a bitmask which specifies options for interpreting the data str
as it is passed. The defined options are:

DCM_ORDERLITTLEENDIAN
Use little-endian format to interpret the data.

DCM_ORDERBIGENDIAN
Use big-endian format to interpret the data.

DCM_FORMATCONVERSION
Convert format as data is imported. This includes stripping leading
and trailing blanks converting some old V2 formats to new V3 formats.

DCM_NOGROUPLENGTH
Remove group length elements if they exist in the input stream.
25/39

Return Values

DCM_NORMAL
DCM_ILLEGALOPTION
DCM_OBJECTCREATEFAILED
DCM_ELEMENTOUTOFORDER
DCM_LISTFAILURE
26/39

mines
e
 that
DCM_IsString

Name

DCM_IsString - Determine if a DICOM Value Representation is a string type.

Synopsis

CTNBOOLEAN DCM_IsString(DCM_VALUEREPRESENTATION representation)

representation One of the enumerated value representations defined in the
include file for this facility.

Description

DCM_IsString examines the representation argument passed by the caller and deter
if the DCM facility considers the data to be in string format. If so, this implies that th
caller will be able to use some of the standard C run-time libraries on the data given
the data is properly terminated.

The set of value representations that are considered to be strings are:

Return Values

TRUE
FALSE

DCM_AE DCM_IS DCM_ST

DCM_AS DCM_LO DCM_TM

DCM_CS DCM_LT DCM_UI

DCM_DA DCM_PN

DCM_DS DCM_ST
27/39

a-

.

ich are
und
ses.

o so.
ated
L ter-
tan-

led
aks
DCM_ListToString

Name

DCM_ListToString - turn a list of ASCII values into a single string with DICOM separ
tors.

Synopsis

CONDITION DCM_ListToString(LST_HEAD *list, long offset,
char **string)

list Caller’s list which contains an ordered set of ASCII strings to be
concatenated into a single string.

offset Offset (in bytes) of the ASCII data in the items stored in the caller’s list

string Address of a pointer to a character string. This function will allocate
memory to hold the output string and will write the address of the
allocated memory in the caller’s string pointer.

Description

DCM_ListToString is used to support string-type data elements with value multiplicity
greater than 1. This function assumes the caller has a homogenous set of items wh
stored in a list (maintained by the LST facility). The ASCII data is expected to be fo
offset bytes from the beginning of these items and is terminated with a NULL in all ca
DCM_ListToString examines the caller’s list and determines the total number of bytes
required to store a concatenation of these strings and allocates enough memory to d
DCM_ListToString then extracts the ASCII data in each item and places it in the alloc
memory. String items are separated with the standard DICOM separator (\). A NUL
minator is written on the tail of the string, allowing the string to be manipulated with s
dard C run-time libraries.

It is the caller’s responsibility to free the memory allocated for the string.

Notes

This is a dangerous function because it can lead to core dumps if the function is cal
with the wrong offset or with improperly terminate data. It is also prone to memory le
if the caller is not careful to free allocated memory when finished.

Return Values

DCM_NORMAL
DCM_MALLOCFAILURE
28/39

e tag
ction
DCM_LookupElement

Name

DCM_LookupElement - find information about an element in the data dictionary.

Synopsis

CONDITION DCM_LookupElement(DCM_ELEMENT *element)

element Address of structure in caller’s address space which contains the
tag (group, element) defining the element and memory to hold
information found in the dictionary.

Description

DCM_LookupElement searches the data dictionary for a single data element using th
value passed by the caller in the element argument. If the element is found, the fun
fills in the values forrepresentation andenglishDescription.

Return Values

DCM_NORMAL
DCM_UNRECOGNIZEDGROUP
DCM_UNRECOGNIZEDELEMENT
29/39

n

le-

g.
dress

nfor-
d can

hich
DCM_ModifyElements

Name

DCM_ModifyElements - modify or add one or more elements in a DICOM Informatio
Object.

Synopsis

CONDITION DCM_ModifyElements(DCM_OBJECT **object
DCM_ELEMENT *requiredList, int count,
DCM_FLAGGED_ELEMENT *flaggedList,
int flagCount, int *updateCount)

object Handle to the caller’s object to be modified.

requiredList Pointer to an array of elements that must be modified.

count Number of elements in the array of required elements.

flaggedList Pointer to an array of elements that may be optionally modified.

flagcount Number of elements in the array of optional elements.

updateCount Number of elements that were successfully modified.

Description

DCM_ModifyElements modifies existing elements in a DICOM Information Object or
adds new elements if they do not currently exist. The caller supplies two arrays of e
ments. The elements in the arrayrequiredList are of type DCM_ELEMENT and describe
attributes that will always be modified. The elements in the arrayflaggedList are of type
DCM_FLAGGED_ELEMENT and are conditionally modified.

The DCM_FLAGGED_ELEMENT structure contains a bit mask and a pointer to a fla
An element of this type is updated only if the bit mask in the element is set at the ad
pointed at by the flag value.

These routines are typically used to copy values from a fixed structure to a DICOM I
mation Object. Some elements are always present in the structure (mandatory), an
be described using therequiredList argument. Other elements may be conditional. The
flaggedList describes the conditional elements and provides bit masks for indicating w
of the elements should be updated.
30/39

ess-

 in an
24.
 of 0
 the
This function modifies as many elements as possible and writes the number of succ
fully modified elements in the variable pointed at byupdateCount. If the caller passes a
NULL pointer, no count is returned.

Return Values

DCM_NORMAL

Code Example

The code example below modifies the number of rows and the window center value
existing Information Object. The number of rows is always updated and is set to 10
The window center value is updated only if the ASCII string in the structure im is not
length. In the example below, the ASCII string is set to “100”, so the code will update
window center value.

#defineCENTER_BIT 0x01;
 typedef struct {
 long flag;
 unsigned short rows;
 char center[24];
} IM;

 static IM im = { 0, 1024, “100” };

 DCM_ELEMENT r = { DCM_IMGROWS, DCM_US, ““, 1,
 sizeof(im.rows), (void *)&im.rows };

 DCM_FLAGGED_ELEMENT w = DCM_IMGWINDOWCENTER, DCM_DS, ““, 1,
 0,(void *)im.center, CENTER_BIT, &im.flag };

 im.flag = 0;

 w.e.length = strlen(w.e.d.string);

 if (w.e.length != 0)

 im.flag |= CENTER_BIT;

 cond = DCM_ModifyElements(&object, &r, 1, &w, 1, NULL);
31/39

ory

aller.

e
esenta-
ce the

. The
le to
DCM_OpenFile

Name

DCM_OpenFile - opens a file containing a DICOM V3 object and creates an in-mem
representation of the object.

Synopsis

CONDITION DCM_OpenFile(char *name, unsigned long options,
DCM_OBJECT **object)

name Full or relative path name of the file to be opened.

options Bitmask specifying options to be used when file is opened and read.

object The handle to the object created by this function and returned to the c

Description

DCM_OpenFile opens a file (name) that contains a DICOM V3 compliant object. The fil
is opened for read only access, the DICOM stream is parsed and an in-memory repr
tion of the object is created. The function creates a handle which is used to referen
object and returns the handle to the caller through the argument object.

The options argument is used to control the file open and passing of the data stream
caller should (mathematically) OR constants found in the DICOM OBJECT include fi
create a legal set of options. Recognized options are:

DCM_ORDERLITTLEENDIAN
Use little-endian format to interpret the data.

DCM_ORDERBIGENDIAN
Use big-endian format to interpret the data.

DCM_FORMATCONVERSION
Convert format as data is imported. This includes stripping leading
and trailing blanks converting some old V2 formats to new V3 formats.

DCM_NOGROUPLENGTH
Remove group length elements if they exist in the input stream.

DCM_PART10FILE
File is a DICOM Part 10 compliant file
32/39

Return Values

DCM_NORMAL
DCM_ILLEGALOPTION
DCM_CREATEOBJECTFAILED
DCM_LISTFAILURE
DCM_FILEOPENFAILED
DCM_FILEACCESSERROR
DCM_ELEMENTOUTOFORDER
33/39

data

ele-
t

located

rmi-

not
e-
DCM_ParseObject

Name

DCM_ParseObject - examine the contents of an Information Object and extract the
from one or more elements.

Synopsis

CONDITION DCM_ParseObject(DCM_OBJECT **object,
DCM_ELEMENT *requiredList, int count,
DCM_FLAGGED_ELEMENT *flaggedList,
intflagCount, int *parseCount)

object Handle to the caller’s object to be parsed.

requiredList Address of an array of elements that are required to be in the object.
Failure to find any of the elements in this array will cause a failure.

count Number of elements in the required list.

 flaggedList Address of an array of elements that may be in the object but are
not required. The function will search for these elements and set bit
masks for any elements that are found.

flagCount Number of elements in the list of optional elements.

parseCount Address of caller’s variable to hold the number of elements found
by this function.

Description

DCM_ParseObject examines an Information Object for a list of required and optional
ments. For each element that is found,DCM_ParseObject extracts the data and places it a
the address which has been specifed by the caller. The caller is expected to have al
memory and described that memory in the DCM_ELEMENTs found inrequiredList and
flaggedList. Any attribute that has a value representation that is an ASCII string is te
nated with a 0 (for later use with standard C run-time libraries).

DCM_ParseObject looks for the elements in requiredList. If any element in that list is
found, the function fails and returns immediately. After searching for the required el
ments, the function searches for the optional elements inflaggedList. Elements which are
not found are ignored. For each element that is found,DCM_ParseObject will set a bit in a
34/39

 count
,

d by
t

w cen-
EN-
flag variable as described in the DCM_FLAGGED_ELEMENT passed throughflag-
gedList.

This function maintains the number of successfully parsed elements and places the
at the integer whose address isparseCount. If the caller passes NULL for this argument
the count is not returned to the caller.

Notes

This function callsDCM_GetElementValue. It assumes that the caller has allocated
enough space to hold each of the elements. This function will return values returne
DCM_GetElementValue if that function is not able to successfully retrieve a value from
the requiredList.

Return Values

DCM_NORMAL
DCM_NULLOBJECT
DCM_ILLEGAL OBJECT
DCM_ELEMENTNOTFOUND
DCM_CANNOTGETSEQUENCE
DCM_FILEACCESSERROR
DCM_GETINCOMPLETE

Code Example

The code example below parses an object and looks for the number of rows and the windo
ter value. After the call to DCM_ParseObject, we can tell if the object had the WINDOW C
TER attribute by testing a bit mask.

#defineCENTER_BIT 0x01;

 typedef struct {
 long flag;
 unsigned short rows;
 char center[24];
} IM;

 static IM im;
 DCM_ELEMENT r = { DCM_IMGROWS, DCM_US, ““, 1, sizeof(im.rows),
 (void *)&im.rows };
 DCM_FLAGGED_ELEMENT w = { DCM_IMGWINDOWCENTER, DCM_DS, ““, 1, 0,
 (void *)im.center, CENTER_BIT, &im.flag };

 im.flag = 0;
 cond = DCM_ParseObject(&object, &r, 1, &w, 1, NULL);
 if (im.flag & CENTER_BIT)
/* Object had a WINDOW CENTER value */
35/39

m-
DCM_RemoveElement

Name

DCM_RemoveElement - remove an element from an information object.

Synopsis

DCM_RemoveElement(DCM_OBJECT **object, DCM_TAG tag)

object The caller’s handle to the information object.

tag The tag (group, element) which defines the element to be removed.

Description

DCM_RemoveElement removes a single element from an information Object. Any me
ory allocated for the internal representation of that element is destroyed.

Return Values

DCM_NORMAL
DCM_ILLEGALOBJECT
DCM_NULLOBJECT
DCM_GROUPNOTFOUND
36/39

ma-
DCM_RemoveGroup

Name

DCM_RemoveGroup - remove an entire group from a DICOM Information Object.

Synopsis

CONDITION DCM_RemoveGroup(DCM_OBJECT **object,
unsigned short group)

object The caller’s handle to the information object.

group The number of the group to be removed.

Description

DCM_RemoveGroup removes a single group and its collected attributes from an Infor
tion Object. Any memory allocated for the internal representation of the individual
attributes or group structure is destroyed.

Return Values

DCM_NORMAL
DCM_ILLEGALOBJECT
DCM_NULLOBJECT
DCM_GROUPNOTFOUND
37/39

DCM_ScanParseObject

Name

Synopsis

Description

Notes

Return Values
38/39

to

 and
 set of

 file
DCM_WriteFile

Name

DCM_WriteFile - Write an encoded DICOM Information Object to a file.

Synopsis

CONDITION DCM_WriteFile(DCM_OBJECT **object,
unsigned long options, char *file)

object Address of caller’s pointer to a DICOM Object. This object is exported
a file.

options Flag containing options which control how the object is encoded
when written to the file.

file Name of file to be created and used for output.

Description

DCM_WriteFile exports an encoded version of an Information Object (stream format)
writes the data to a file. The user supplies a handle for an Information Object and a
flags which control how the data are exported to the file. This function creates a new
with name file and writes the stream representation of the data to that file.

Recognized options are:

DCM_ORDERLITTLEENDIAN Use little-endian format to interpret the data.

DCM_ORDERBIGENDIAN Use big-endian format to interpret the data.

Return Values

DCM_NORMAL
DCM_NULLOBJECT
DCM_ILLEGALOBJECT
DCM_FILECREATEFAILED
DCM_FILEIOERROR
DCM_ILLEGALOPTION
DCM_LISTFAILURE
39/39

	Programmer’s Guide to the DCM Facility
	1 Introduction
	1.1 Data Elements
	1.2 Data Objects
	1.3 Miscellaneous Issues

	2 Data Structures
	2.1 DCM_ELEMENT

	3 Include Files
	4 Return Values
	5 DCM Functions

	DCM_AddElement
	DCM_CloseObject
	DCM_CreateObject
	DCM_Debug
	DCM_DumpElements
	DCM_ElementDictionary
	DCM_ExportStream
	DCM_GetElement
	DCM_GetElementValue
	DCM_GetElementValueList
	DCM_GetElementSize
	DCM_GetObjectSize
	DCM_GetSequenceList
	DCM_GroupDictionary
	DCM_ImportStream
	DCM_IsString
	DCM_ListToString
	DCM_LookupElement
	DCM_ModifyElements
	DCM_OpenFile
	DCM_ParseObject
	DCM_RemoveElement
	DCM_RemoveGroup
	DCM_ScanParseObject
	DCM_WriteFile

